Thoth Children
ログイン
知識投稿
他サービス
Thothnator
Thoth Coworker
ウジャトで理解する学問
You Only Search Once(β)
Thoth Hieroglyph
ヒエログリフ変換
次候補決定方法でグラフ探索種類
編集
次の探索候補をどのように決めるかでグラフ探索の種類を分類します.ここではメジャーな深さ方向にとことん探索してなかったら戻る深さ優先探索ととりあえず広く少しずつ探索していく幅優先探索について紹介します.
編集
2018.7.22
65
Views
0
Watch
3
Knows
Watch登録
知識登録
削除申請
一つ上へ
反復深化探索
反復深化探索(反復深化深さ優先探索, ID, Iterative deepening depth-first search)は深さを制限した深さ優先探索を最大深さ0から次第に大きくしながら目的のデータが見つかるまで繰り返す探索.深さ優先のメモリの効率性と幅優先探索の完全性、最適性を備え持っているため、深さ優先探索や幅優先探索よりも理論上優れていることが多い.
幅優先探索
幅優先探索はグラフデータの中でスタートのデータから浅いデータから探索し、見つからなければ更に深いところで次の候補を探していく探索.今まで見てきたデータを保持するため空間計算量が大きく、頂点数VでO(V)、または深さdと平均分岐数bを用いてO(b^d)と記述できます
深さ優先探索
深さ優先探索はグラフデータの中でスタートのデータからとりあえずグラフの分岐がなくなるまで探索し、なくなったら少し戻って次の候補を探していく探索.データが深いところにありうる場合には幅優先探索でなくこちらを使用します.際限なく深くなりそうなときは最大深さを決めて途中で打ち切る場合もあります.通常幅優先探索より空間計算量ははるかに小さくなる.
×
新しい分野を追加
×
新しい知識を追加
×
分野の削除申請
×
移動または削除を行うには理由を申請ください。
理由
他の分野の移動の場合は分野を設定してください。 削除要請される場合はそのまま下のボタンを押下してください.
分野:
学問
技術
言語
高校
中学
一般
物性
道具
思考
計算
アルゴ
その他
分野の説明を編集
×
分野のタイトルを編集
×
次候補決定方法でグラフ探索種類の新規投稿
反復深化探索
反復深化探索(反復深化深さ優先探索, ID, Iterative deepening depth-first search)は深さを制限した深さ優先探索を最大深さ0から次第に大きくしながら目的のデータが見つかるまで繰り返す探索.深さ優先のメモリの効率性と幅優先探索の完全性、最適性を備え持っているため、深さ優先探索や幅優先探索よりも理論上優れていることが多い.
PV
1083
Fav
0
2018.07.22
幅優先探索
幅優先探索はグラフデータの中でスタートのデータから浅いデータから探索し、見つからなければ更に深いところで次の候補を探していく探索.今まで見てきたデータを保持するため空間計算量が大きく、頂点数VでO(V)、または深さdと平均分岐数bを用いてO(b^d)と記述できます
PV
141
Fav
0
2018.07.22
深さ優先探索
深さ優先探索はグラフデータの中でスタートのデータからとりあえずグラフの分岐がなくなるまで探索し、なくなったら少し戻って次の候補を探していく探索.データが深いところにありうる場合には幅優先探索でなくこちらを使用します.際限なく深くなりそうなときは最大深さを決めて途中で打ち切る場合もあります.通常幅優先探索より空間計算量ははるかに小さくなる.
PV
281
Fav
0
2018.07.22
次候補決定方法でグラフ探索種類人気知識・質問
反復深化探索
反復深化探索(反復深化深さ優先探索, ID, Iterative deepening depth-first search)は深さを制限した深さ優先探索を最大深さ0から次第に大きくしながら目的のデータが見つかるまで繰り返す探索.深さ優先のメモリの効率性と幅優先探索の完全性、最適性を備え持っているため、深さ優先探索や幅優先探索よりも理論上優れていることが多い.
PV
1083
Fav
0
2018.07.22
深さ優先探索
深さ優先探索はグラフデータの中でスタートのデータからとりあえずグラフの分岐がなくなるまで探索し、なくなったら少し戻って次の候補を探していく探索.データが深いところにありうる場合には幅優先探索でなくこちらを使用します.際限なく深くなりそうなときは最大深さを決めて途中で打ち切る場合もあります.通常幅優先探索より空間計算量ははるかに小さくなる.
PV
281
Fav
0
2018.07.22
幅優先探索
幅優先探索はグラフデータの中でスタートのデータから浅いデータから探索し、見つからなければ更に深いところで次の候補を探していく探索.今まで見てきたデータを保持するため空間計算量が大きく、頂点数VでO(V)、または深さdと平均分岐数bを用いてO(b^d)と記述できます
PV
141
Fav
0
2018.07.22