Thoth Children!!|
新規Thoth投稿
DBSCAN
DBSCAN(Density-based spatial clustering of applications with noise)は主に密度の高い箇所と低い箇所の違いでどんなクラス数でどんな形状でもクラスタリング可能な手法. k-meansと違い予めクラスタ数は不要で線形分離できないクラスタリングも可能.
PV 18
Fav 0
2020.08.29
ガウス過程
複数の入力に対応した出力値がガウス分布(正規分布)に従う確率過程であるときガウス過程と呼ぶ. 「xの値が近いときにyの値が近い」というのを分散共分散行列で表現. 回帰として使えば、分かっているデータから他のx座標に対応したy座標の平均と座標を推定可能. この記事ではこの回帰を行う場合について簡単に解説する.
PV 101
Fav 0
2020.08.29
単純ベイズ分類器
単純ベイズ分類器(ナイーブベイズ)は、特徴間は全て独立という強引な前提を置き、ベイズの定理を使用することで、特徴量を入力にクラスを分類する分類器.単純で実装も容易ではあるが、一部のアプリケーションで十分に働く.メールのスパム分類で使用されたことで有名.
PV 251
Fav 0
2019.03.04
パーティクルフィルタ
パーティクルフィルタ(粒子フィルタ、モンテカルロフィルタ)は、複数の粒子にノイズをくわえながら観測データとモデルを元に内部状態を推定しく手法.非線形なモデルに対しても適用でき、粒子の数だけ精度はよくなるが、計算量もその分増える.実装が簡単で様々な分野で適用することができるのが特徴.
PV 536
Fav 0
2019.03.03
プロペラ複雑でも反トルク対策したい
プロペラの機構が複雑になってもカウンタートルク/反トルクの対策をしたい場合に参考になる設計について紹介します.ここでは非常に有名な二重反転プロペラについて紹介します.二重反転プロペラは船舶等においても用いられることがあります.
PV 154
Fav 0
2019.03.03
Bairstow法による求根
Bairstow法は、1次元多項式に対して効率的に全ての解を求める求根アルゴリズム.二次式の解を求めて関数を割るのを低次の式になるまで繰り返す手法.数値的な性質はよくなく桁落ちしやすいとされる.
PV 67
Fav 0
2019.03.03
Broyden法による求根
Broyden法(ブライデン法)は複数の方程式から得られる多次元の解を求める数値計算手法で、セカント法を一般化した手法.セカントが傾きで微分を近似したように、計算が複雑なヤコビ行列を一つ前のヤコビ行列の更新で実現.
PV 94
Fav 0
2019.03.03
セカント法による求根
セカント法(割線法)は、関数が0になる変数の値を求めることができる球根アルゴリズムで、ニュートン法では微分できることが必要でしたが、その必要はなく一つ前の解との差分から傾きを計算する手法です.ここでは一次元のみ紹介します.セカント法はニュートン法と異なり二次収束しないため、ニュートン法ほどの収束の速さは保証されませんが関数によっては早くなります.
PV 318
Fav 0
2019.03.03
逆数の計算を計算の置換えで早くする
逆数の計算は愚直に実装をすると遅くなってしまいます.そこでニュートン法を用いることで逆数の計算を引き算と2回掛け算の反復処理に変換することで高速に求めます.
PV 137
Fav 0
2019.03.02
ニュートン法による求根
求根アルゴリズムとして有名である頻繁に使用されるニュートン法(1次元の場合)について紹介します.ニュートン法によって関数の値がゼロになる値等を算出します.探索する初期値に依存し、解は一つしか見つけられませんが、比較的高速です.導関数が適切に得られる必要があります.
PV 269
Fav 0
2019.03.02
人間にゲーム状態を記録してもらいたい
ドラゴンクエストシリーズの初期のゲームにおける「ふっかつのじゅもん」は外部記憶装置ではなく人間にデータを保持してもらうことでゲーム状態の記録を実現しています.システムが提示する「じゅもん」なるゲーム状態を表す文字列をユーザに提示し保持してもらいます.この文字列データの中身がわからないことでユーザが改ざんを防ぐとともに、チェックサムを導入することでまぐれによる成功を防ぐ.
PV 102
Fav 0
2019.02.07
グレンジャー因果検定
ある二つの時系列データが与えられたときにその時系列間にグレンジャー因果性があるかどうかを判定する検定.グレンジャー因果は本当の因果関係ではなくあくまで片方のデータ列からもう片方のデータ列を推定できる関係.
PV 607
Fav 0
2019.02.07
Burrows–Wheeler変換
Burrows–Wheeler変換(ブロックソート圧縮)は、情報を一切失うことなく文字列の順番を変えることで後工程で圧縮を行いやすくするデータ圧縮の前処理.繰り返し表現が増えたりするため、MTF変換や連長圧縮などと組み合わせてさらに圧縮しやすくします.もちろん可逆圧縮の処理になります.
PV 45
Fav 0
2019.02.07
算術符号
算術符号は、与えられたデータを0~1の有理数に割り当てることで符号化する.頻度に応じて有理数のとれる幅を変更することで、頻出するものほど短い表現を、滅多に現れないものほど長い表現になるようにできている.テキスト圧縮や画像圧縮において用いられている.
PV 67
Fav 0
2019.02.07
PR曲線
PR曲線(Precision-Recall Curve)は、2クラスの分類の評価指標を与える曲線で、精度(Precision)と再現率(Recall)を軸にプロットしたグラフ.理想的な状態は右上に曲線が張り付く状態.大方ROC曲線と同じだが、ROC曲線より注目データに偏りがあって少ないデータしかないクラスがあるときに有用.
PV 374
Fav 0
2019.02.07
ハフマン符号
ハフマン符号は、よく頻出するものの符号長を短くしてあまり現れないものに対する符号長を長くすることでデータ全体を小さくすることができる符号化.
PV 53
Fav 0
2019.02.03
可逆圧縮と非可逆圧縮
可逆圧縮と非可逆圧縮について解説しているページになります.難しいことはなく、可逆圧縮は圧縮したものを再度元に戻す時に完全に復元できる圧縮、非可逆圧縮は一度圧縮すると元に完全には戻せない圧縮のことをさします.
PV 67
Fav 0
2019.02.02
万有引力による位置エネルギー
保存力である万有引力があることによって定義することができる位置エネルギーについてまとめています.負の方向に無限大になるため、基準を無限遠点になるようにするのが一般的です.位置エネルギーは万有引力を積分することで得られます.
PV 116
Fav 0
2019.02.01
交差検証法
データが少ない時には学習器の推定精度を適切に評価しにくいため、工夫が必要となります.交差検証法(Cross Validation法)は、一部を訓練データとして他をテストデータとした評価を何度か行い、どのデータもテストデータとも訓練データとも使用して評価をすることで予測誤差、推定精度をより正確にする手法です.
PV 116
Fav 1
2019.02.01
ROC曲線
ROC曲線(受信者操作特性, Receiver Operating Characteristic)は、2クラスの分類の評価指標を与える曲線.もともとは信号処理の分野において用いられていたものだが、他分野でも使用されている.ある閾値を変えていく過程で再現率を縦軸、偽陽性率を横軸にプロットしたグラフ.曲線の下側の面積をAUC(Area Under Curve)と呼び、1に近いほどよく、曲線は左上に張り付いている方がよい.
PV 219
Fav 0
2019.01.29
Pop技術
  • K
    点が三角形の内側か判定したい
  • S
    GAN
  • K
    インピーダンス制御
  • S
    ニューラルネット学習の工夫
  • K
    同次変換行列
  • S
    ロボットの力制御の種類
  • K
    行列を分解して上下三角行列が欲しい
  • S
    ニューラルネットワーク
  • K
    多変数関数の極大極小を判定したい
  • S
    Convolution
  • K
    ヤコビ行列による逆運動学
  • S
    点群から検出したい
  • K
    シンプルに逆行列を求めたい
  • S
    RELU系活性化関数
  • K
    シャドウグラフによる可視化
  • S
    重力補償機構
  • K
    アドミッタンス制御
  • S
    点群をデータ構造で持つ
  • K
    ヘッセ行列
  • S
    DeepLearningとは
  • K
    時系列間の類似度計算を選ぶ
  • S
    活性化関数基本
  • K
    文字列を簡単な置換による暗号化したい
  • S
    Sigmoid系活性化関数
  • K
    ベクトルを別のベクトルに射影したい
  • S
    Pooling
  • K
    ピンホールとレンズの違いを知りたい
  • S
    Adam系最適化関数
  • K
    グレンジャー因果検定
  • S
    点群を間引きたい
  • K
    点が直線上の右か左にあるか判定したい
  • S
    特殊な層
  • K
    点群データから法線算出をしたい
  • S
    逆運動学
  • K
    Relu活性化関数
  • S
    ロボットエンドエフェクタの位置制御
  • K
    ベクトルを特定の平面に射影したい
  • S
    ベクトル間の類似度が欲しい
  • K
    点群から最近傍点を検出したい
  • S
    点群から特徴量を出したい
  • K
    パーティクルフィルタ
  • S
    オプティカルフロー
  • K
    点群を平面に近似したい
  • S
    二値化フィルタ
  • K
    確率分布間の差異で類似度を求めたい
  • S
    CNN
  • K
    Global Average Pooling層
  • S
    気体の可視化手法
  • K
    シュリーレン法
  • S
    ResNet
  • K
    大津の方法による二値化フィルタ
  • S
    決定木学習
  • K
    グラッドストーン・デールの式
  • S
    最適化関数基本
  • K
    擬似逆行列
  • S
    いろいろな距離が欲しい
  • K
    二次元点群から凸包を求めたい
  • S
    ソフトマックス系活性化関数
  • K
    LeakyRelu活性化関数
  • S
    SGD系最適化関数
人気分野/目的
SNS
Facebookシェア このエントリーをはてなブックマークに追加